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Introduction
Spark Holland is a world-class provider of innovative 
sample introduction, extraction and separation technology 
for analytical systems. Their systems are used in laboratories 
all over the world. A key component of Spark is the ultra-
high-performance liquid-chromatography (UHPLC) pump 
(Figure 1). This instrument can pump mobile-phase 
solvents with a very accurate flow rate over a large pressure 
range. For their new range of UHPLC pumps, the company 
wanted to achieve a level of performance that would be top-
class. They asked Controllab for help on the control system 
of the pump. Together they not only succeeded in building 
this pump, but they also developed a machine-learning 
algorithm that can automatically diagnose pump data 
and indicate potential faults.

UHPLC pump
In analytical chemistry, UHPLC is a technique used to 
separate, identify and quantify components in a mixture;  
for instance, blood. It works by passing pressurised solvent 
containing the sample mixture under high pressure through 
a column with a solid adsorbent material. Each component 
interacts slightly differently with the adsorbent material, 
causing different flow rates and leading to the separation of 

Aiming at top-class performance for its new range of ultra-high-performance liquid-
chromatography (UHPLC) pumps, Spark Holland engaged Controllab for the model-
based design of the pump control. Together, they also developed a machine learning 
algorithm that can automatically diagnose pump data and indicate potential faults.

the components as they run out of the column. The separated 
components can then be identified using an analyser. 

To successfully separate the components, a UHPLC pump is 
used to pressurise the liquid solvent and maintain a constant 
flow rate and pressure at the outlet. A short drop in pressure 
or a small deviation in flow rate can lead to incorrect 
identification of the components in a sample. In 2012, Spark 
wanted to develop a new range of UHPLC pumps. Controllab 
was asked to help develop the control system.

Figure 2 shows a schematic of a UHPLC pump. Two pistons 
(primary piston PP and secondary piston SP) and two 
pressure chambers (primary and secondary chamber) are 
used to maintain a constant flow rate and outlet pressure. By 
using a specific stroke pattern for both pistons, the pressures 
inside both chambers can be controlled and the pressure of 
the secondary chamber can be kept constant. As this secondary 
chamber is directly connected to the outlet, this results in 
a constant flow rate and pressure for the outlet. Spark wanted 
the pump to operate in the pressure range of 0 to 1,300 bar 
and deliver a flow rate of 1 μl/minute to 5 ml/minute.

Model-based design
Controllab created a simulation model to investigate the pump 
design and assess the requirements. The model included the 
electric drives, brushless DC motors, lead screws, pistons, 
fluids and all the nonlinearities involved. The model was 
developed in 20-sim, a modelling and simulation package 
well suited for physics and control software. Test set-ups were 
made in Spark’s laboratory to measure the nonlinearities 
of the components and to verify the components of the 
simulation model. Figure 3 shows the top view of the model.

Analysis of the simulation data showed that micrometer 
accuracy of piston movement was needed to meet the flow 
requirements. In addition, the nonlinearities of the components 
and the properties of the fluid had to be incorporated in the 
control system to achieve the desired accuracy of the pressure.The UHPLC pump of Spark Holland. 
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A control system was designed by Controllab that separated 
the pump strokes into different regions (forward-stroke 
pressure build-up, forward-stroke fluid flow, etc.) and applied 
a specific controller goal for each region. The control system 
performed well in several simulations. C-code was generated 
from the controller and deployed on an embedded board 
mounted on a test set-up. Various tests were carried out in the 
laboratory to verify the simulation results. The pump design 
was able to provide a stable flow under all conditions.

Based on this test set-up, Spark decided to go for it and scale 
up to detailed design. After a successful period of laboratory 
testing with a small batch of prototypes, the factory design 
was ready in 2015. The pump was an instant hit, with large 
numbers sold to customers all over the world.

Pump maintenance
The UHPLC pump contains parts that can wear out during 
use and cause failure. Examples are leakage of the primary 
and secondary seals and leakage of the check valve. Each 
pump contains firmware that communicates with the 
internal sensors and actuators and logs data to a memory 
buffer. This allows service engineers working on the pump 
(Figure 4) to retrieve the last 240 seconds of data and 
examine it to determine the cause of failure. The pump does 
not contain sensors to detect failures directly. The service 

engineer must therefore examine the data and search for 
deviations from normal use that may indicate the correct 
cause of the failure. Spark wanted to develop software that 
would help the service engineers identify the most likely 
cause of failure. The software needed to include a pattern 
recognition algorithm that could identify each type of 
failure with sufficient accuracy, but how?
 
Machine learning
Machine learning is a technique that can handle pattern 
recognition quite well. Large sets of data are used to train 
a neural network to recognise specific patterns and connect 
these to a specific failure, such as a primary seal leak. Once 
the network has been trained, its parameters are frozen. 
The network can then be used on a real pump to diagnose 
its performance and indicate the cause of failure.

To find good results with machine learning, large data sets 
are needed. For each component that can fail, the various 
stages of failure must be captured in the data sets. Multiple 
failing components require orthogonal data sets, which 
leads to an exponential growth of the data sets with the 
number of components. Spark did not have these data sets. 
Only a small set of pumps were dismantled in the laboratory 
to inspect the failed components and record usage data. 
On the other hand, they had the highly accurate simulation 
model from Controllab. So, this gave rise to the idea of 
using the simulation model to create synthetic data sets. 

Failures can be easily introduced into a simulation model. 
For example, primary seal leakage can be introduced as a 
flow path from the piston chamber to the housing, where 
the flow is a function of the piston speed and chamber 
pressure. A degradation parameter such as the laminar 
flow conductivity can be used to indicate the leakage flow. 
In this way, failures can be added to the simulation model 
by increasing the degradation parameter. For each failure, 
a specific degradation parameter was used. 

By running simulations, artificial data sets could be created. 
Now the first question was: is this data set rich enough to 
train a neural network? Are the failures leading to changes 
in behaviour that are distinguishable enough for a neural 
network to identify them individually? The second question 
was: will this network give good results in practice? Were 
the failures modelled sufficiently well to make the network 
also work well on data from real pumps?

Neural networks
A machine-learning pipeline was used to prepare the generated 
data sets for training (see Figure 5). In order to automate the 
data-generation process, degradation parameter combinations 
were defined in an Excel file, starting with individual non-zero 
parameters followed by combinations of non-zero parameters. 

UHPLC pump system containing electrically driven pistons.
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Top view of the 20-sim simulation model for the UHPLC pump.
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Each failure class had approximately the same number of 
parameter combinations such that the resulting dataset was 
balanced. Using 20-sim’s Python scripting interface, these 
parameter values could be entered into the model to run a 
simulation. The results of the simulation were stored in a .csv 
file (comma-separated values) containing all model variables 
against a fixed time step for the duration of one pump stroke. 

A pre-processing algorithm read these files and turned them 
into a data set that was suitable for training the neural network. 
During the pre-processing, only relevant data was selected, 
such as the pressure in the primary and secondary chambers of 
the pump and the position of the pistons. The selected variables 
were normalised using a min-max scaler so that all values were 
between 0 and 1 and stored in a new data file. This prevented 
variables with large numerical values from dominating 
the operation of the neural network. 

Next, each data file that was the result of a simulation with one 
parameter set, was divided in windows based on the logic state 
variables of the controller. The selected windows were then 
interpolated to have a fixed window size of 100 samples so that 
the data was suitable for an LSTM (long short-term memory 
neural network) model. Finally, the resulting data files were 
divided in 80% training and 20% validation data. 

The neural network that was used consisted of a convolutional 
neural network (CNN) coupled to an LSTM. The CNN was 
used to perform feature extraction from raw data; features are 
recognisable parts if the data is plotted (e.g., mean value, 
maximum value, maximum slope, etc). The LSTM was used to 
recognise patterns in multivariate time series of data; patterns 
are combinations of features that indicate a failure and the 
severity of that failure. Figure 6 shows the neural network 
model architecture. The output of the network was an 
indication of the degradation of the pump due to a certain 
failure. For example, for the primary piston seal the leakage flow 
was given ranging from zero to severe in a number of steps.

Each signal consisting of 100 samples (each colour of the 
input layer is a different variable, with vertically the 100 
time samples) was directly used as an input for the CNN. 
Several layers of LSTM read the outputs of the CNN and 
processed an output; the number of layers and number of 
neurons used per layer are called the hyperparameters of 
the neural network. The TensorFlow framework was used to 
implement the neural network. Using a batch of 64 data sets 
and Bayesian optimisation, the hyperparameters were 
determined; for example, the number of layers and the size 
that will give the best performing network. With these 
hyperparameter values, the complete data set was used 
to train the neural network. During this training, the 
parameters of the neural network were changed until 
the best performing network was obtained.

After the training, the parameters were frozen and the 
resulting neural network could be used to identify faults. 
The network was first tested on the batch of validation data 
set aside after the simulations. These tests showed that the 
network was capable of identifying various faults with an 
accuracy of 90% or higher. The network was then applied to 
a small set of test pumps available in the laboratory. Similar 
good results were obtained. The neural network was able 
to identify pump failures with sufficient resolution to help 
a service engineer determine which component needed 
to be replaced to get a pump working again. 

Service engineer working on the UHPLC pump.
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The machine-learning pipeline.
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Diagnostics
Spark has implemented the neural network into their 
diagnostics software. When service engineers connect their 
PC to a pump, the diagnostics software automatically guides 
them through the procedure. During a standard test, 
the UHPLC pump is filled with water and runs through 
a preset cycle of flow rates and pressures. As it runs, data 
is automatically logged and sent to the PC for analysis. 
The neural network is fed with the data and provides 
results. The software will translate this into instructions 
for the engineer. Once the faulty component has been 
replaced, the test is repeated to check that the pump 
is operating correctly.

The new diagnostics software has a number of benefits. 
First of all, the engineer has an easier job of troubleshooting 
the pump and fixing it. For the customer, this means lower 
costs because only the faulty component needs to be 
replaced. But the biggest advantage comes from the 
quantification of the various failures. For example, the 
neural network returns the leakage of a piston seal varying 
from zero to large in a number of steps. If the seal has 
a small leakage, the pump controller will compensate 
and maintain the desired flow rate and pressure. The 
customer will not notice but the diagnostics tool will. 
Moreover, the tool can potentially be used for prognostics; 
this could become a next step in R&D at Spark Holland.

Patents

A database search showed that the approach of using 
model-generated data sets to train a neural network to find 
defects in a UHPLC pump was sufficiently new for a patent 
filing. The patent was filed in 2020 and granted in 2022. 
Also, a European patent about diagnostics is pending.

•  US20220128522A1, “Training a neural network processor for 
diagnosis of a controlled liquid chromatography pump unit”.

 
• EP 3 992 626 A1, patent pending.

The CNN + LSTM model.
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20-sim

The 20-sim modelling and simulation software package for mechatronic systems 
is used by many companies in the precision engineering industry to analyse the 
dynamic behaviour of machines and develop and test control systems. With 20-sim, 
models can be entered graphically, similar to drawing an engineering scheme. These 
models enable simulating and analysing the behaviour of multi-domain dynamic 
systems and creating control systems. 

20-sim comes with a large collection of library components that allows the quick 
assembly of electro-mechanical models such as the brushless-motor-driven spindle 
in Figure 7. This section was used as the drive train of the pumps in the UHPLC model. 
The control library was used to develop a controller for the pump. After successful 
simulations, the controller block was exported as C-code from 20-sim and deployed 
on the embedded controller of the UHPLC pump. 

All library components in 20-sim are open, allowing the easy addition of non-
standard behaviour by changing the component equations. In case of the spindle 
(Figure 7), this was done by giving the linear thread small deviations within the 
tolerances provided by the manufacturer. Using Python scripting, the use of 20-sim 
can be automated. This allows engineers to change a model parameter, run 
a simulation and store the results in a .csv file. In this way, the data sets for 
the neural network were generated.

 WWW.20SIM.COM 
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Port-based modelling of a motor-driven spindle in 20-sim.
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