
THEME – MODEL-BASED DESIGN AND SIMULATION

USING MACHINE LEARNING
FOR PUMP DIAGNOSTICS

AUTHORS’ NOTE

Cornelis Tump is the Research
& Development director at
Spark Holland, located in
Emmen (NL). Spark Holland,
a supplier of analytical
systems for modern
laboratories, is an expert in
liquid handling and sample
preparation. Christian Kleijn
is the CEO and owner of
Controllab, located in
Enschede (NL). Controllab is
the developer of the 20-sim
modelling and simulation
software package.

sales@sparkholland.com
www.sparkholland.com
info@controllab.nl
www.controllab.nl

CORNELIS TUMP AND CHRISTIAN KLEIJN

Introduction
Spark Holland is a world-class provider of innovative
sample introduction, extraction and separation technology
for analytical systems. Their systems are used in laboratories
all over the world. A key component of Spark is the ultra-
high-performance liquid-chromatography (UHPLC) pump
(Figure 1). This instrument can pump mobile-phase
solvents with a very accurate flow rate over a large pressure
range. For their new range of UHPLC pumps, the company
wanted to achieve a level of performance that would be top-
class. They asked Controllab for help on the control system
of the pump. Together they not only succeeded in building
this pump, but they also developed a machine-learning
algorithm that can automatically diagnose pump data
and indicate potential faults.

UHPLC pump
In analytical chemistry, UHPLC is a technique used to
separate, identify and quantify components in a mixture;
for instance, blood. It works by passing pressurised solvent
containing the sample mixture under high pressure through
a column with a solid adsorbent material. Each component
interacts slightly differently with the adsorbent material,
causing different flow rates and leading to the separation of

Aiming at top-class performance for its new range of ultra-high-performance liquid-
chromatography (UHPLC) pumps, Spark Holland engaged Controllab for the model-
based design of the pump control. Together, they also developed a machine learning
algorithm that can automatically diagnose pump data and indicate potential faults.

the components as they run out of the column. The separated
components can then be identified using an analyser.

To successfully separate the components, a UHPLC pump is
used to pressurise the liquid solvent and maintain a constant
flow rate and pressure at the outlet. A short drop in pressure
or a small deviation in flow rate can lead to incorrect
identification of the components in a sample. In 2012, Spark
wanted to develop a new range of UHPLC pumps. Controllab
was asked to help develop the control system.

Figure 2 shows a schematic of a UHPLC pump. Two pistons
(primary piston PP and secondary piston SP) and two
pressure chambers (primary and secondary chamber) are
used to maintain a constant flow rate and outlet pressure. By
using a specific stroke pattern for both pistons, the pressures
inside both chambers can be controlled and the pressure of
the secondary chamber can be kept constant. As this secondary
chamber is directly connected to the outlet, this results in
a constant flow rate and pressure for the outlet. Spark wanted
the pump to operate in the pressure range of 0 to 1,300 bar
and deliver a flow rate of 1 μl/minute to 5 ml/minute.

Model-based design
Controllab created a simulation model to investigate the pump
design and assess the requirements. The model included the
electric drives, brushless DC motors, lead screws, pistons,
fluids and all the nonlinearities involved. The model was
developed in 20-sim, a modelling and simulation package
well suited for physics and control software. Test set-ups were
made in Spark’s laboratory to measure the nonlinearities
of the components and to verify the components of the
simulation model. Figure 3 shows the top view of the model.

Analysis of the simulation data showed that micrometer
accuracy of piston movement was needed to meet the flow
requirements. In addition, the nonlinearities of the components
and the properties of the fluid had to be incorporated in the
control system to achieve the desired accuracy of the pressure.The UHPLC pump of Spark Holland.

1

20 nr 5 2023

A control system was designed by Controllab that separated
the pump strokes into different regions (forward-stroke
pressure build-up, forward-stroke fluid flow, etc.) and applied
a specific controller goal for each region. The control system
performed well in several simulations. C-code was generated
from the controller and deployed on an embedded board
mounted on a test set-up. Various tests were carried out in the
laboratory to verify the simulation results. The pump design
was able to provide a stable flow under all conditions.

Based on this test set-up, Spark decided to go for it and scale
up to detailed design. After a successful period of laboratory
testing with a small batch of prototypes, the factory design
was ready in 2015. The pump was an instant hit, with large
numbers sold to customers all over the world.

Pump maintenance
The UHPLC pump contains parts that can wear out during
use and cause failure. Examples are leakage of the primary
and secondary seals and leakage of the check valve. Each
pump contains firmware that communicates with the
internal sensors and actuators and logs data to a memory
buffer. This allows service engineers working on the pump
(Figure 4) to retrieve the last 240 seconds of data and
examine it to determine the cause of failure. The pump does
not contain sensors to detect failures directly. The service

engineer must therefore examine the data and search for
deviations from normal use that may indicate the correct
cause of the failure. Spark wanted to develop software that
would help the service engineers identify the most likely
cause of failure. The software needed to include a pattern
recognition algorithm that could identify each type of
failure with sufficient accuracy, but how?

Machine learning
Machine learning is a technique that can handle pattern
recognition quite well. Large sets of data are used to train
a neural network to recognise specific patterns and connect
these to a specific failure, such as a primary seal leak. Once
the network has been trained, its parameters are frozen.
The network can then be used on a real pump to diagnose
its performance and indicate the cause of failure.

To find good results with machine learning, large data sets
are needed. For each component that can fail, the various
stages of failure must be captured in the data sets. Multiple
failing components require orthogonal data sets, which
leads to an exponential growth of the data sets with the
number of components. Spark did not have these data sets.
Only a small set of pumps were dismantled in the laboratory
to inspect the failed components and record usage data.
On the other hand, they had the highly accurate simulation
model from Controllab. So, this gave rise to the idea of
using the simulation model to create synthetic data sets.

Failures can be easily introduced into a simulation model.
For example, primary seal leakage can be introduced as a
flow path from the piston chamber to the housing, where
the flow is a function of the piston speed and chamber
pressure. A degradation parameter such as the laminar
flow conductivity can be used to indicate the leakage flow.
In this way, failures can be added to the simulation model
by increasing the degradation parameter. For each failure,
a specific degradation parameter was used.

By running simulations, artificial data sets could be created.
Now the first question was: is this data set rich enough to
train a neural network? Are the failures leading to changes
in behaviour that are distinguishable enough for a neural
network to identify them individually? The second question
was: will this network give good results in practice? Were
the failures modelled sufficiently well to make the network
also work well on data from real pumps?

Neural networks
A machine-learning pipeline was used to prepare the generated
data sets for training (see Figure 5). In order to automate the
data-generation process, degradation parameter combinations
were defined in an Excel file, starting with individual non-zero
parameters followed by combinations of non-zero parameters.

UHPLC pump system containing electrically driven pistons.

2

Top view of the 20-sim simulation model for the UHPLC pump.

3

 nr 5 2023 21

THEME – MODEL-BASED DESIGN AND SIMULATION

Each failure class had approximately the same number of
parameter combinations such that the resulting dataset was
balanced. Using 20-sim’s Python scripting interface, these
parameter values could be entered into the model to run a
simulation. The results of the simulation were stored in a .csv
file (comma-separated values) containing all model variables
against a fixed time step for the duration of one pump stroke.

A pre-processing algorithm read these files and turned them
into a data set that was suitable for training the neural network.
During the pre-processing, only relevant data was selected,
such as the pressure in the primary and secondary chambers of
the pump and the position of the pistons. The selected variables
were normalised using a min-max scaler so that all values were
between 0 and 1 and stored in a new data file. This prevented
variables with large numerical values from dominating
the operation of the neural network.

Next, each data file that was the result of a simulation with one
parameter set, was divided in windows based on the logic state
variables of the controller. The selected windows were then
interpolated to have a fixed window size of 100 samples so that
the data was suitable for an LSTM (long short-term memory
neural network) model. Finally, the resulting data files were
divided in 80% training and 20% validation data.

The neural network that was used consisted of a convolutional
neural network (CNN) coupled to an LSTM. The CNN was
used to perform feature extraction from raw data; features are
recognisable parts if the data is plotted (e.g., mean value,
maximum value, maximum slope, etc). The LSTM was used to
recognise patterns in multivariate time series of data; patterns
are combinations of features that indicate a failure and the
severity of that failure. Figure 6 shows the neural network
model architecture. The output of the network was an
indication of the degradation of the pump due to a certain
failure. For example, for the primary piston seal the leakage flow
was given ranging from zero to severe in a number of steps.

Each signal consisting of 100 samples (each colour of the
input layer is a different variable, with vertically the 100
time samples) was directly used as an input for the CNN.
Several layers of LSTM read the outputs of the CNN and
processed an output; the number of layers and number of
neurons used per layer are called the hyperparameters of
the neural network. The TensorFlow framework was used to
implement the neural network. Using a batch of 64 data sets
and Bayesian optimisation, the hyperparameters were
determined; for example, the number of layers and the size
that will give the best performing network. With these
hyperparameter values, the complete data set was used
to train the neural network. During this training, the
parameters of the neural network were changed until
the best performing network was obtained.

After the training, the parameters were frozen and the
resulting neural network could be used to identify faults.
The network was first tested on the batch of validation data
set aside after the simulations. These tests showed that the
network was capable of identifying various faults with an
accuracy of 90% or higher. The network was then applied to
a small set of test pumps available in the laboratory. Similar
good results were obtained. The neural network was able
to identify pump failures with sufficient resolution to help
a service engineer determine which component needed
to be replaced to get a pump working again.

Service engineer working on the UHPLC pump.

4

The machine-learning pipeline.

5

22 nr 5 2023

Diagnostics
Spark has implemented the neural network into their
diagnostics software. When service engineers connect their
PC to a pump, the diagnostics software automatically guides
them through the procedure. During a standard test,
the UHPLC pump is filled with water and runs through
a preset cycle of flow rates and pressures. As it runs, data
is automatically logged and sent to the PC for analysis.
The neural network is fed with the data and provides
results. The software will translate this into instructions
for the engineer. Once the faulty component has been
replaced, the test is repeated to check that the pump
is operating correctly.

The new diagnostics software has a number of benefits.
First of all, the engineer has an easier job of troubleshooting
the pump and fixing it. For the customer, this means lower
costs because only the faulty component needs to be
replaced. But the biggest advantage comes from the
quantification of the various failures. For example, the
neural network returns the leakage of a piston seal varying
from zero to large in a number of steps. If the seal has
a small leakage, the pump controller will compensate
and maintain the desired flow rate and pressure. The
customer will not notice but the diagnostics tool will.
Moreover, the tool can potentially be used for prognostics;
this could become a next step in R&D at Spark Holland.

Patents

A database search showed that the approach of using
model-generated data sets to train a neural network to find
defects in a UHPLC pump was sufficiently new for a patent
filing. The patent was filed in 2020 and granted in 2022.
Also, a European patent about diagnostics is pending.

• US20220128522A1, “Training a neural network processor for
diagnosis of a controlled liquid chromatography pump unit”.

• EP 3 992 626 A1, patent pending.

The CNN + LSTM model.

6

20-sim

The 20-sim modelling and simulation software package for mechatronic systems
is used by many companies in the precision engineering industry to analyse the
dynamic behaviour of machines and develop and test control systems. With 20-sim,
models can be entered graphically, similar to drawing an engineering scheme. These
models enable simulating and analysing the behaviour of multi-domain dynamic
systems and creating control systems.

20-sim comes with a large collection of library components that allows the quick
assembly of electro-mechanical models such as the brushless-motor-driven spindle
in Figure 7. This section was used as the drive train of the pumps in the UHPLC model.
The control library was used to develop a controller for the pump. After successful
simulations, the controller block was exported as C-code from 20-sim and deployed
on the embedded controller of the UHPLC pump.

All library components in 20-sim are open, allowing the easy addition of non-
standard behaviour by changing the component equations. In case of the spindle
(Figure 7), this was done by giving the linear thread small deviations within the
tolerances provided by the manufacturer. Using Python scripting, the use of 20-sim
can be automated. This allows engineers to change a model parameter, run
a simulation and store the results in a .csv file. In this way, the data sets for
the neural network were generated.

 WWW.20SIM.COM

7

Port-based modelling of a motor-driven spindle in 20-sim.

 nr 5 2023 23

